Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 300(1): 434-60, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16965768

RESUMO

The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein-coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory organs. Analysis of the sea urchin genome presents a unique perspective on the evolutionary history of deuterostome nervous systems and reveals new approaches to investigate the development and neurobiology of sea urchins.


Assuntos
Genoma , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/crescimento & desenvolvimento , Ouriços-do-Mar/crescimento & desenvolvimento , Animais , Axônios/fisiologia , Conexinas/genética , Eletrofisiologia , Humanos , Larva/fisiologia , Mamíferos , Neurônios/fisiologia , Filogenia , Ouriços-do-Mar/classificação , Ouriços-do-Mar/genética , Sinapses/fisiologia , Fatores de Transcrição/genética
2.
Development ; 128(22): 4393-404, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11714666

RESUMO

We have identified a single homolog of goosecoid, SpGsc, that regulates cell fates along both the animal-vegetal and oral-aboral axes of sea urchin embryos. SpGsc mRNA is expressed briefly in presumptive mesenchyme cells of the approximately 200-cell blastula and, beginning at about the same time, accumulates in the presumptive oral ectoderm through pluteus stage. Loss-of-function assays with morpholine-substituted antisense oligonucleotides show that SpGsc is required for endoderm and pigment cell differentiation and for gastrulation. These experiments and gain-of-function tests by mRNA injection show that SpGsc is a repressor that antagonizes aboral ectoderm fate specification and promotes oral ectoderm differentiation. We show that SpGsc competes for binding to specific cis elements with SpOtx, a ubiquitous transcription activator that promotes aboral ectoderm differentiation. Moreover, SpGsc represses transcription in vivo from an artificial promoter driven by SpOtx. As SpOtx appears long before SpGsc transcription is activated, we propose that SpGsc diverts ectoderm towards oral fate by repressing SpOtx target genes. Based on the SpGsc-SpOtx example and other available data, we propose that ectoderm is first specified as aboral by broadly expressed activators, including SpOtx, and that the oral region is subsequently respecified by the action of negative regulators, including SpGsc. Accumulation of SpGsc in oral ectoderm depends on cell-cell interactions initiated by nuclear beta-catenin function, which is known to be required for specification of vegetal tissues, because transcripts are undetectable in dissociated or in cadherin mRNA-injected embryos. This is the first identified molecular mechanism underlying the known dependence of oral-aboral ectoderm polarity on intercellular signaling.


Assuntos
Padronização Corporal , Proteínas de Homeodomínio/metabolismo , Proteínas Repressoras/metabolismo , Ouriços-do-Mar/embriologia , Transativadores , Fatores de Transcrição , Sequência de Aminoácidos , Animais , Diferenciação Celular , Proteínas do Citoesqueleto/metabolismo , Sistema Digestório/embriologia , Endoderma/citologia , Gástrula/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteína Goosecoid , Proteínas de Homeodomínio/genética , Dados de Sequência Molecular , Boca/embriologia , Fatores de Transcrição Otx , Pigmentação , Ligação Proteica , Proteínas Repressoras/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Transcrição Gênica , beta Catenina
3.
Genesis ; 30(4): 239-49, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11536430

RESUMO

The emergence of four genes encoding myogenic bHLH transcription factors in the stem vertebrate is a unique feature of vertebrate evolution that led to the acquisition of new target genes and novel regulatory circuits for skeletal muscle formation. One unresolved question is the extent to which each factor has evolved specialized functions for regulating muscle gene transcription. We have developed a system using differentiated myogenin (-/-) embryonic stem (ES) cells to determine whether other myogenic factors can replace myogenin's function in muscle differentiation. Previously, we showed that constitutively expressed myogenin restores myofiber formation in differentiated myogenin (-/-) ES cells, but constitutively expressed MyoD does not. Here, we confirm the distinction between myogenin and MyoD using another expression vector and show that constitutively expressed MRF4 leads to myofiber formation in myogenin's absence. Our analysis reveals a correlation between the levels of myogenin plus MRF4 and the extent of myofiber formation, suggesting a synergy between these factors. The results indicate that unlike MyoD, MRF4 plays a role similar to myogenin in skeletal muscle differentiation.


Assuntos
Diferenciação Celular , Músculo Esquelético/embriologia , Proteína MyoD/metabolismo , Fatores de Regulação Miogênica/metabolismo , Miogenina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Fusão Celular , Linhagem Celular , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Músculo Esquelético/citologia , Proteína MyoD/genética , Miofibrilas/metabolismo , Fatores de Regulação Miogênica/genética , Miogenina/genética , Cadeias Pesadas de Miosina/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Dev Biol ; 232(2): 424-38, 2001 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11401403

RESUMO

Strongylocentrotus purpuratus Otx (SpOtx) is required simultaneously in sea urchin development for the activation of endo16 in the vegetal plate and for the activation of spec2a in the aboral ectoderm. Because Otx binding sites alone do not appear to be responsible for the spatially restricted expression of spec2a, additional DNA elements were sought. We show here that consensus Otx binding sites fused to basal promoters are sufficient to activate CAT reporter gene expression in all cell types, although expression in endomesoderm progenitors is enhanced. On the other hand, three non-Otx elements derived from the spec2a enhancer are needed together with Otx sites for specifically aboral ectoderm expression. A DNA element termed Y/CBF, lying just downstream from an Otx site within the spec2a enhancer, mediates general activation in the ectoderm. A second element lying between the Otx and Y/CBF sites, called OER, functions to prevent expression in the oral ectoderm. A third site, called ENR, overlapping another Otx site, is required to repress endoderm expression. Three distinct DNA binding proteins interact sequence specifically at the Y/CBF, OER, and ENR elements. The spec2a enhancer thus consists of closely linked activator and repressor elements that function collectively to cause expression of the spec2a gene in the aboral ectoderm.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/genética , Animais , Sequência de Bases , Sítios de Ligação/genética , Padronização Corporal/genética , Primers do DNA/genética , Elementos Facilitadores Genéticos , Genes Reguladores , Genes Reporter , Dados de Sequência Molecular , Fatores de Transcrição Otx , Regiões Promotoras Genéticas
5.
Dev Biol ; 229(2): 340-50, 2001 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11203698

RESUMO

myogenin (-/-) mice display severe skeletal muscle defects despite expressing normal levels of MyoD. The failure of MyoD to compensate for myogenin could be explained by distinctions in protein function or by differences in patterns of gene expression. To distinguish between these two possibilities, we compared the abilities of constitutively expressed myogenin and MyoD to support muscle differentiation in embryoid bodies made from myogenin (-/-) ES cells. Differentiated embryoid bodies from wild-type embryonic stem (ES) cells made extensive skeletal muscle, but embryoid bodies from myogenin (-/-) ES cells had greatly attenuated muscle-forming capacity. The inability of myogenin (-/-) ES cells to generate muscle was independent of endogenous MyoD expression. Skeletal muscle was restored in myogenin (-/-) ES cells by constitutive expression of myogenin. In contrast, constitutive expression of MyoD resulted in only marginal enhancement of skeletal muscle, although myocyte numbers greatly increased. The results indicated that constitutive expression of MyoD led to enhanced myogenic commitment of myogenin (-/-) cells but also indicated that committed cells were impaired in their ability to form muscle sheets without myogenin. Thus, despite their relatedness, myogenin's role in muscle formation is distinct from that of MyoD, and the distinction cannot be explained merely by differences in their expression properties.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/embriologia , Proteína MyoD/fisiologia , Miogenina/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Divisão Celular , Eletroporação , Sequências Hélice-Alça-Hélice , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Proteína MyoD/genética , Miogenina/genética , Cadeias Pesadas de Miosina/análise , Cadeias Pesadas de Miosina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Transcrição Gênica , Transfecção
6.
Genes Dev ; 15(1): 24-9, 2001 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11156601

RESUMO

math5 is a murine orthologue of atonal, a bHLH proneural gene essential for the formation of photoreceptors and chordotonal organs in Drosophila. The expression of math5 coincides with the onset of retinal ganglion cell (RGC) differentiation. Targeted deletion of math5 blocks the initial differentiation of 80% of RGCs and results in an increase in differentiated amacrine cells. Furthermore, the absence of math5 abolishes the retinal expression of brn-3b and the formation of virtually all brn-3b-expressing RGCs. These results imply that math5 is a proneural gene essential for RGC differentiation and that math5 acts upstream to activate brn-3b-dependent differentiation processes in RGCs.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/citologia , Fatores de Transcrição/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Colina O-Acetiltransferase/análise , Proteínas de Ligação a DNA/genética , Drosophila/genética , Proteínas de Drosophila , Sequências Hélice-Alça-Hélice , Isoenzimas/análise , Proteínas de Membrana/análise , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteína Quinase C/análise , Proteína Quinase C-alfa , Proteínas Qa-SNARE , Retina/citologia , Células Ganglionares da Retina/fisiologia , Fator de Transcrição Brn-3 , Fator de Transcrição Brn-3B , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
7.
Nucleic Acids Res ; 29(24): 4983-93, 2001 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11812828

RESUMO

Retinal development occurs in mice between embryonic day E11.5 and post-natal day P8 as uncommitted neuroblasts assume retinal cell fates. The genetic pathways regulating retinal development are being identified but little is understood about the global networks that link these pathways together or the complexity of the expressed gene set required to form the retina. At E14.5, the retina contains mostly uncommitted neuroblasts and newly differentiated neurons. Here we report a sequence analysis of an E14.5 retinal cDNA library. To date, we have archived 15 268 ESTs and have annotated 9035, which represent 5288 genes. The fraction of singly occurring ESTs as a function of total EST accrual suggests that the total number of expressed genes in the library could approach 27 000. The 9035 ESTs were categorized by their known or putative functions. Representation of the genes involved in eye development was significantly higher in the retinal clone set compared with the NIA mouse 15K cDNA clone set. Screening with a microarray containing 864 cDNA clones using wild-type and brn-3b (-/-) retinal cDNA probes revealed a potential regulatory linkage between the transcription factor Brn-3b and expression of GAP-43, a protein associated with axon growth. The retinal EST database will be a valuable platform for gene expression profiling and a new source for gene discovery.


Assuntos
Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Retina/metabolismo , Animais , Proteínas de Ciclo Celular/genética , DNA Complementar/genética , Proteína GAP-43/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Retina/embriologia , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcrição Gênica
8.
Mol Cell Neurosci ; 16(2): 141-56, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10924257

RESUMO

The POU domain transcription factor Brn-3b (also called Brn-3.2) is essential for the normal development of retinal ganglion cells (RGCs) in the mouse. Without Brn-3b, RGCs commit to their fate and migrate to the ganglion cell layer, but most cells die during fetal development. An earlier report (L. Gan et al., 1999, Dev. Biol. 210, 469-480) suggested that cell death was caused by abnormal axon formation. Here, we use retinal explants from wild-type and mutant embryos to show that brn-3b-deficient RGCs are not properly polarized and tend to form dendrites rather than axons. Compared with wild-type explants, neurites of RGCs from brn-3b-deficient retinal explants grew slower, were shorter, and did not fasciculate properly. Mutant neurites had more microtubules than wild-type controls, and the arrangement of microtubules and neurofilaments was characteristic of dendrites rather than axons. Neurites from individual mutant RGCs displayed abnormal polarity and had dendrite-like branches extending outward from their main axis. Most mutant RGCs exhibited abnormal migratory behavior, and their neurites labeled intensely with the dendrite marker MAP-2. A small number of mutant RGCs were not migratory, and their neurites were longer and labeled positively for the axon marker tau-1, suggesting that some RGCs were not as severely affected by the absence of Brn-3b as others. Although tau-1 was not observed in most mutant neurites, it did accumulate in mutant cell bodies, implying that the absence of Brn-3b caused a defect in axon transport. Thus, Brn-3b appears to control the activity of genes that function in establishing RGC polarity, and without Brn-3b, RGCs cannot extend normal axons.


Assuntos
Axônios/fisiologia , Polaridade Celular/fisiologia , Proteínas de Ligação a DNA/genética , Células Ganglionares da Retina/ultraestrutura , Fatores de Transcrição/genética , Animais , Axônios/química , Células Cultivadas , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Neuritos/fisiologia , Proteínas de Neurofilamentos/fisiologia , Fatores do Domínio POU , Estrutura Terciária de Proteína , Células Ganglionares da Retina/química , Fator de Transcrição Brn-3 , Fator de Transcrição Brn-3B , Fatores de Transcrição/análise , Fatores de Transcrição/química , Proteínas tau/análise , Proteínas tau/genética
9.
Dev Biol ; 224(1): 29-41, 2000 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-10898959

RESUMO

Myogenin and MRF4 are skeletal muscle-specific bHLH transcription factors critical for muscle development. In addition to a variety of skeletal muscle defects, embryos homozygous for mutations in myogenin or MRF4 display phenotypes in the thoracic skeleton, including rib fusions and sternal defects. These skeletal defects are likely to be secondary because myogenin and MRF4 are not expressed in the rib cartilage or sternum. In this study, the requirement for myogenin and MRF4 in thoracic skeletal development was further examined. When a hypomorphic allele of myogenin and an MRF4-null mutation were placed together, the severity of the thoracic skeletal defects was greatly increased and included extensive rib cartilage fusion and fused sternebrae. Additionally, new rib defects were observed in myogenin/MRF4 compound mutants, including a failure of the rib cartilage to contact the sternum. These results suggested that myogenin and MRF4 share overlapping functions in thoracic skeletal formation. Spatial expression patterns of skeletal muscle-specific markers in myogenin- and MRF4-mutant embryos revealed early skeletal muscle defects not previously reported. MRF4-/- mice displayed abnormal intercostal muscle morphology, including bifurcation and fusion of adjacent intercostals. myogenin/MRF4-mutant combinations displayed ventral myotome defects, including a failure to express normal levels of myf5. The results suggested that the early muscle defects observed in myogenin and MRF4 mutants may cause subsequent thoracic skeletal defects, and that myogenin and MRF4 have overlapping functions in ventral myotome differentiation and intercostal muscle morphogenesis.


Assuntos
Músculos Intercostais/embriologia , Fatores de Regulação Miogênica/genética , Miogenina/genética , Somitos/metabolismo , Tórax/embriologia , Alelos , Animais , Cruzamentos Genéticos , Desmina/metabolismo , Hibridização In Situ , Músculos Intercostais/anormalidades , Músculos Intercostais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fatores de Regulação Miogênica/metabolismo , Miogenina/metabolismo , Costelas/anormalidades , Costelas/embriologia , Esterno/anormalidades , Esterno/embriologia , Tórax/anormalidades , Tórax/metabolismo
10.
Dev Biol ; 219(2): 287-98, 2000 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10694423

RESUMO

The basic helix-loop-helix (bHLH) transcription factors-MyoD, Myf5, myogenin, and MRF4-can each activate the skeletal muscle-differentiation program in transfection assays. However, their functions during embryogenesis, as revealed by gene-knockout studies in mice, are distinct. MyoD and Myf5 have redundant functions in myoblast specification, whereas myogenin and either MyoD or MRF4 are required for differentiation. Paradoxically, myoblasts from myogenin mutant or MyoD/MRF4 double-mutant neonates differentiate normally in vitro, despite their inability to differentiate in vivo, suggesting that the functions of the myogenic bHLH factors are influenced by the cellular environment and that the specific myogenic defects observed in mutant mice do not necessarily reflect essential functions of these factors. Understanding the individual roles of these factors is further complicated by their ability to cross-regulate one another's expression. To investigate the functions of Myf5 in the absence of contributions from other myogenic bHLH factors, we generated triple-mutant mice lacking myogenin, MyoD, and MRF4. These mice appear to contain a normal number of myoblasts, but in contrast to myogenin or MyoD/MRF4 mutants, differentiated muscle fibers fail to form in vivo and myoblasts from neonates of this triple-mutant genotype are unable to differentiate in vitro. These results suggest that physiological levels of Myf5 are insufficient to activate the myogenic program in the absence of other myogenic factors and suggest that specialized functions have evolved for the myogenic bHLH factors to switch on the complete program of muscle gene expression.


Assuntos
Proteínas de Ligação a DNA , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/embriologia , Transativadores , Animais , Animais Recém-Nascidos , Sequência de Bases , Osso e Ossos/anormalidades , Diferenciação Celular , Primers do DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Sequências Hélice-Alça-Hélice/genética , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/anormalidades , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5 , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Miogenina/genética , Miogenina/metabolismo , Transfecção
11.
Dev Genes Evol ; 210(2): 73-81, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10664150

RESUMO

Members of the Tcf/Lef family interact with beta-catenin to activate programs of gene expression during development. Recently beta-catenin was shown to be essential for establishing cell fate along the animal-vegetal axis of the sea urchin embryo. To examine the role of Tcf/Lef in sea urchins we cloned a Strongylocentrotus purpuratus Tcf/Lef homolog. Expression of SpTcf/Lef was maximal when beta-catenin became localized to nuclei of vegetal blastomeres, consistent with its acting in combination with beta-catenin to specify vegetal cell fates. Expression of a dominant-negative SpTcf/Lef inhibited primary and secondary mesenchyma, endoderm, and aboral ectoderm formation in a manner similar to that observed when nuclear accumulation of beta-catenin was prevented. Our results suggest that SpTcf/Lef functions by interacting with beta-catenin to specify cell fates along the sea urchin animal-vegetal axis.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Ouriços-do-Mar/embriologia , Transativadores , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem da Célula , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Fator 1 de Ligação ao Facilitador Linfoide , Microinjeções , Dados de Sequência Molecular , Mutação , Filogenia , RNA Mensageiro/metabolismo , Ouriços-do-Mar/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , beta Catenina
12.
Biochem Biophys Res Commun ; 262(3): 677-84, 1999 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-10471385

RESUMO

A mouse line was generated that expressed a gene trap reporter construct, betageo, in a dynamic pattern during embryonic development. Differential expression was seen within the developing eyes, limbs, heart, neural tube, and skeleton. Two transcripts were cloned that contained endogenous sequences fused to the gene trap vector sequence. Analysis of the endogenous sequences revealed that the reporter integrated within a gene belonging to a small group of eukaryotic superfamily I helicases. Unexpectedly, the majority of transcripts produced from the trapped locus were not affected by the insertion of the reporter. Although the function of the trapped helicase gene is unknown, its complex transcription patterns and widespread spatial-temporal distribution suggest that the gene product plays a role in RNA metabolism in multiple tissues and organs within the developing embryo.


Assuntos
Regulação Enzimológica da Expressão Gênica , Técnicas Genéticas , RNA Helicases/genética , RNA Helicases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Osso e Ossos/embriologia , Osso e Ossos/enzimologia , Encéfalo/enzimologia , Linhagem Celular , Clonagem Molecular , Sequência Conservada , Desenvolvimento Embrionário e Fetal , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Humanos , Mesoderma/enzimologia , Mesoderma/fisiologia , Camundongos , Dados de Sequência Molecular , Mutação , Fases de Leitura Aberta , RNA Helicases/química , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Transfecção , beta-Galactosidase/genética
13.
Dev Biol ; 212(2): 425-39, 1999 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10433832

RESUMO

We show here that the homeodomain transcription factor SpOtx is required for endoderm and aboral ectoderm formation during sea urchin embryogenesis. SpOtx target genes were repressed by fusing the SpOtx homeodomain to an active repression domain of Drosophila Engrailed. The Engrailed-SpOtx fusion protein reduced the expression of endoderm- and aboral ectoderm-specific genes and inhibited the formation of endoderm and aboral ectoderm cell types. Coexpressing activated beta-catenin with Engrailed-SpOtx did not overcome the inhibition of endoderm and aboral ectoderm formation, suggesting that SpOtx functioned either downstream of or parallel to nuclear beta-catenin. Embryos expressing C-cadherin, which blocks nuclear translocation of beta-catenin, have defects in endoderm and aboral ectoderm formation. Coexpressing SpOtx with C-cadherin restored aboral ectoderm-specific gene expression and aboral ectoderm morphology, but with C-cadherin present, SpOtx was not sufficient for endoderm formation. Our results show that SpOtx plays a key role in the activation of aboral ectoderm- and endoderm-specific gene expression and, in addition, suggest that SpOtx mediates some of beta-catenin's functions in endoderm and aboral ectoderm formation.


Assuntos
Padronização Corporal , Proteínas do Citoesqueleto/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ouriços-do-Mar/embriologia , Transativadores , Fatores de Transcrição/metabolismo , Animais , Caderinas/metabolismo , Proteínas do Citoesqueleto/genética , Ectoderma , Endoderma , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , beta Catenina
14.
Biotechniques ; 27(1): 154-62, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10407678

RESUMO

A lacZ transgene, expressed by the myogenin promoter, was introduced into the mouse hypoxanthine phosphoribosyltransferase (Hprt) locus by gene targeting in embryonic stem cells. Embryos between E10.5-E18.5 days were analyzed for expression of the transgene after staining for beta-galactosidase activity. Transgene expression was restricted to the skeletal muscle lineages reflecting a similar temporal and spatial pattern previously demonstrated for the endogenous myogenin gene. Additionally, a second transgene, MC1tk, showed expression in 87% of the clones when targeted to Hprt. This strategy, called targeted transgenesis, provides control for analyzing promoter sequences and for comparing various transgenes expressed by the same promoter.


Assuntos
Marcação de Genes , Hipoxantina Fosforribosiltransferase/genética , Óperon Lac/genética , Miogenina/genética , Animais , Arabinofuranosiluracila/análogos & derivados , Arabinofuranosiluracila/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Marcação de Genes/métodos , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/genética , Histocitoquímica , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Regiões Promotoras Genéticas , Células-Tronco/metabolismo , Timidina Quinase/genética , Cromossomo X/genética
15.
Biochem Biophys Res Commun ; 258(2): 229-33, 1999 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-10375352

RESUMO

Otx proteins comprise an important class of homeodomain-containing transcription factors known for their essential roles in anterior head formation. Here, we briefly review the basic structural features and functional diversity of Otx proteins and describe current views on the evolution of Otx genes in metazoans. A prominent feature of Otx homeodomains is a lysine residue at position 9 of the recognition helix, which confers high-affinity binding to TAATCC/T elements on DNA. Besides their DNA binding properties, surprisingly little is known about how Otx proteins function to activate target genes in selective regions of the embryo. While an essential and ancient role for Otx is to pattern the anterior regions of the head, drawing conclusions about primordial functions is difficult. This is because Otx proteins have been recruited for numerous developmental roles, and derived functions have often evolved to meet the specialized requirements of individual taxonomic groups. In sea urchin embryos, one form of Otx may have been co-opted by the Wnt--catenin signaling pathway. The consequence of such an evolutionary event would be to link a highly conserved signal transduction pathway to a set of novel downstream genes that make use of Otx for their transcription.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio/metabolismo , Animais , Duplicação Gênica , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Conformação Proteica
16.
Dev Biol ; 210(2): 469-80, 1999 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10357904

RESUMO

While the mammalian retina is well understood at the anatomical and physiological levels, little is known about the mechanisms that give rise to the retina's highly ordered pattern or its diverse neuronal cell types. Previous investigations have shown that gene disruption of the POU-IV class transcription factor Brn-3b (Brn-3.2) resulted in the loss of most retinal ganglion cells in retinas of postnatal mice. Here, we used lacZ and human placental alkaline phosphatase genes knocked into the brn-3b locus to follow the fate of brn-3b-mutant cells in the developing retina. We found that Brn-3b was not required for the initial commitment of retinal ganglion cell fate or for the migration of ganglion cells to the ganglion cell layer. However, Brn-3b was essential for the normal differentiation of retinal ganglion cells; without it, the cells underwent enhanced apoptosis. Retinal ganglion cells lacking brn-3b extended processes at the appropriate time in development, but these processes were disorganized, resulting in a thinner optic nerve. Explanted retinas from brn-3b-null embryos also extended processes when cultured in vitro, but the processes were shorter and less bundled than in wild-type retinas. Ultrastructural and marker analyses showed that the processes of mutant ganglion cells had dendritic rather than axonal features, suggesting that mutant cells formed dendrites in place of axons. These results suggest that Brn-3b regulates the activity of genes whose products play essential roles in the formation of retinal ganglion cell axons.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fosfatase Alcalina/genética , Alelos , Animais , Apoptose , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Desenvolvimento Embrionário e Fetal , Heterozigoto , Homozigoto , Humanos , Camundongos , Camundongos Transgênicos , Retina/embriologia , Fator de Transcrição Brn-3 , Fator de Transcrição Brn-3B , beta-Galactosidase/genética
17.
Dev Biol ; 208(1): 44-55, 1999 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10075840

RESUMO

The myogenic basic helix-loop-helix transcription factor myogenin plays an essential role in the differentiation of skeletal muscle and, secondarily, in rib and sternum formation during mouse development. However, virtually nothing is known about the quantitative requirements for myogenin in these processes. Here, we describe the generation of mice carrying a hypomorphic allele of myogenin, which expresses myogenin transcripts at approximately one-fourth the level of the wild-type myogenin allele. The hypomorphic allele in combination with wild-type and myogenin-null alleles was used to create an allelic series. Embryos representing the complete range of genotypes from homozygous wild type to homozygous null were analyzed for their viability, ability to form normal ribs and sternum, and extent of skeletal muscle differentiation. Embryos carrying the hypomorphic myogenin allele over a wild-type allele were normal. In embryos bearing homozygous hypomorphic alleles, the sternum developed normally and extensive skeletal muscle differentiation occurred. However, muscle hypoplasia and reduced muscle-specific gene expression were apparent in these embryos, and the mice were not viable as neonates. When the hypomorphic allele was placed over a myogenin-null allele, the resulting embryos had sternum defects resembling homozygous myogenin-null embryos, and there was severe muscle hypoplasia. Our results demonstrate that skeletal muscle formation is highly sensitive to the absolute levels of myogenin and that correct sternum formation, skeletal muscle differentiation, and viability each require distinct threshold levels of myogenin.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Miogenina/genética , Esterno/crescimento & desenvolvimento , Alelos , Animais , Desenvolvimento Embrionário e Fetal , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Sequências Hélice-Alça-Hélice/genética , Imuno-Histoquímica , Camundongos , Músculo Esquelético/embriologia , Mutação , Fenótipo , RNA Mensageiro/metabolismo , Esterno/embriologia , Fatores de Transcrição/genética
18.
Biochem Biophys Res Commun ; 250(3): 674-81, 1998 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-9784405

RESUMO

Three mouse lines were generated from independent gene trap events in embryonic stem cells. These lines express a betageo reporter gene in a subset of cells at sites of embryonic hematopoiesis. The 5' breakpoints of all three lines were found to lie in 45S ribosomal RNA transcription units. Expression was apparently linked to metabolic activity in these cells, since the kinetics of expression during embryogenesis matched that of cycling cells with colony forming unit spleen (CFU-S) potential. Expression was not seen in adult tissues unless the animals were treated with hydroxyurea, inducing synchronous entry of quiescent CFU-S into the cell cycle. Our results suggest that there is a subset of hematopoietic stem cells, which when actively proliferating, express the SAbetageo reporter construct from RNA polymerase I transcription units.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , RNA Ribossômico/genética , Animais , Diferenciação Celular/genética , Genes Reporter , Camundongos
20.
Biochem Biophys Res Commun ; 248(3): 738-43, 1998 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-9703997

RESUMO

Hereditary multiple exostoses (EXT) is a genetically heterogeneous, autosomal dominant skeletal disorder. The gene for EXT1 maps to human chromosome 8q24.1 and encodes an evolutionary conserved protein that is a member of a multigene family. The mouse homolog of human EXT1 protein is 99% similar to its human counterpart. Here, we present the expression profiles of the mouse EXT1 gene. EXT1 mRNA is initially expressed at 6.5 days post-coitum (d.p.c.), which coincides with gastrulation of the mouse embryo. Whole mount in situ hybridization with 10.5 to 12.5 d.p.c. mouse embryos showed a high level of expression of EXT1 mRNA in developing limb buds. Epitope tagging experiments revealed the endoplasmic reticulum localization of EXT1 protein. This localization was consistent with a hydrophobic stretch of amino acids present at the N-terminal end of the EXT1 protein. These results provide novel information on the function of EXT1 and the etiology of hereditary multiple exostoses.


Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 8 , Exostose Múltipla Hereditária/genética , Regulação da Expressão Gênica no Desenvolvimento , N-Acetilglucosaminiltransferases , Biossíntese de Proteínas , Proteínas/genética , Células 3T3 , Animais , Evolução Biológica , Embrião de Mamíferos , Desenvolvimento Embrionário e Fetal , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica , Reação em Cadeia da Polimerase , RNA Mensageiro/biossíntese , Proteínas Recombinantes/biossíntese , Transcrição Gênica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...